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Abstract

In this paper, we introduce a regularization of the PN equations for one-dimensional,
slab geometries. These equations are used to describe particle transport through a
material medium. Our regularization is based on a temporal splitting of fast and slow
dynamics in the PN system. It uses ideas first introduced in [14] for 2 × 2 systems to
address systems of arbitrary size and with spatially varying media. The regularization
captures the proper diffusion limit in diffusive regimes, but behaves like the original
PN system in streaming regimes. It also allows for larger times steps in diffusive
regimes, when the original PN system is stiff. In particular, for simulations in which
the computational mesh does not resolve the particle mean-free-path, the regularization
admits a simple scheme with no stability restrictions on the time step.

Keywords: diffusive relaxation, stiff relaxation, transport theory, PN equations, temporal
regularization, operator splitting
AMS classification: 65M99, 65Z05, 35F10, 82D75, 78M05

1 Introduction

In a kinetic description, the transfer of neutral particles through a material medium is
governed by a transport equation, generally of the form

∂tF + v · ∇xF = C(F ) . (1)
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Here x ∈ Ω ⊂ R
3 is a spatial coordinate, v ∈ R

3 is a velocity coordinate, t ≥ 0 is time, and the
function F = F (v, x, t) is the non-negative distribution of particles in position-momentum
phase space. The left-hand side of (1) describes the evolution of F along inertial trajectories,
while the collision operator C on the right-hand side describes particle interactions with the
medium via scattering and absorption/emission processes.

One approach to solving (1) is with moment methods. In the moment approach, one
tracks the evolution of a finite number of velocity moments of F . These moments, which
are functions of space and time only, can then be used to reconstruct an approximation of
F . Their evolution is approximated by a system of partial differential equations that are
derived directly from (1). The exact form of these equations and the reconstruction of F is
known as the closure problem. For most closures, the moment equations form a hyperbolic
system.

When the material medium is fixed in space, there is typically a diffusive limit for (1) in
which F is approximated by a non-negative scalar function of space and time that satisfies
a diffusion equation. This approximation is valid when collision processes dominate, i.e.,
when the mean free path between collisions is small compared to macroscopic variations in
the system. Because collisions drive particles into equilibrium with the fixed medium, long
time scales are required in order to observe non-trivial dynamics. A basic requirement of any
closure is that the resulting moment system has the same diffusion limit as the transport
equation (1).

For numerical simulations, the hyperbolic nature of most moment systems and the
parabolic nature of the diffusion approximation are not always compatible. As a conse-
quence, the simulation of multi-scale problems with multiple temporal and spatial scales can
be a challenge. In practice, there is a need for hyperbolic solvers that can handle shocks and
discontinuities associated with streaming regimes (when the collisions are less frequent), but
also behave like standard diffusion solvers in diffusive regimes. In particular, a hyperbolic
solver should be consistent with the diffusion equation in the diffusion limit. This is the so-
called asymptotic preserving property [14]. Unfortunately, hyperbolic solvers use numerical
dissipation to maintain stability around discontinuities, and in most cases, this dissipation
increases as the system approaches the diffusive limit. At some point, the numerical dissipa-
tion dominates the actual physical diffusion in the system. Consequently, one may generate
results which appear correct (because they are smooth), but are far from accurate.

Another drawback of conventional hyperbolic solvers is a restrictive time step. In diffusive
regimes, the relevant time scales are related to the macroscopic features of the system.
However, hyperbolic solvers typically take time steps on the order of the (much smaller)
particle mean flight time in order to maintain stability. As a result, the simulation of
diffusive systems with hyperbolic solvers may be inefficient.

Extensive studies have been dedicated to the development of hyperbolic solvers which
correctly capture the diffusion limit. We refer the reader to Section 3 for a brief overview
of previous work, most of which has been limited to 2 × 2 systems in one dimension. The
prototype model for such systems is the hyperbolic heat equation [15].

Our current interest is in simulating moment systems of arbitrary size—a task we found
to be substantially more difficult than the 2 × 2 case. In the present paper, we focus our
attention on the so-called PN equations [21,31], for which the reconstruction of F is a finite
linear combination of polynomials in the velocity variable with coefficients that depend on
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space and time. Here the letter ‘P ’ is the conventional notation for these polynomials and
the integer N refers to the order of the expansion. When N = 1, the PN equations are
equivalent to the hyperbolic heat equation.

We restrict the scope of our study to systems for which: (i) particles travel with a single
speed (but different directions); (ii) C is a simple scattering operator; and (iii) the material
medium has a slab geometry. This last assumption allows us to express the PN system using
only one spatial dimension. Future efforts will focus on extensions to more general nonlinear
systems with more complicated physics and geometries.

The method presented here uses ideas from [14] to construct a temporal regularization
of the original PN system that is more amenable to numerical simulation. Our regularized
system has two major benefits:

1. The diffusion limit is built directly into the equations. Thus numerical dissipation is not
an issue. Moreover, diffusive terms can be discretized directly with simple, standard
techniques.

2. The regularized system is less stiff. At worst, an explicit diffusion time step is required
for stability. However, in cases where the numerical mesh spacing does not resolve
the mean free path (so-called under-resolved cases), an implicit treatment of diffusion
terms removes any stability-based restriction on the time step.

The organization of the paper is as follows. In Section 2, we derive the PN equations
under the simplified setting alluded to above. In Section 3, we discuss stiffness and excessive
numerical dissipation in the context of the 2 × 2 P1 system. We then present the method
in [14] that was developed to address these challenges. In Section 4, we show how to extend
this method from the P1 system to the P3 system when the scattering cross-section of the
material medium is constant. In Section 5, we consider general PN system with spatially
varying cross-sections. In Section 6 we make conclusions and discuss future work.

2 The PN Equations in One Dimension

We assume a distribution of particles of a single speed which scatter off a background with
slab geometry, independently of their direction of travel. With a diffusive scaling, the trans-
port equation takes the form

∂tF +
1

ε
µ∂xF = − σ

ε2

(

F − 1

2
〈F 〉

)

. (2)

In this simplified, one-dimensional setting, x ∈ [x0, x1] is now the scalar coordinate along
the axis perpendicular to a material slab, µ ∈ [−1, 1] is the cosine of the angle between the
x-axis and the direction of particle travel, t ≥ 0 is time, and for any measurable function
g = g(µ),

〈g〉 ≡
∫ 1

−1

g(µ)dµ . (3)

The non-negative function F (µ, x, t) is the density of particles with respect to the measure
dµdx. The constant ε is a positive parameter and the variable σ = σ(x) is the (scaled)
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material cross-section. For fixed σ, the diffusive limit corresponds to ε → 0. One can recover
a dimensional version of (2) by setting ε = 1.

2.1 Derivation

If F (·, x, t) ∈ L2(dµ), then it can be expanded in terms of basis functions {pn}∞n=0 defined
on [−1, 1]:

F (µ, x, t) =

∞
∑

n=0

vn(x, t)pn(µ) . (4)

By truncating this expansion at some positive integer N , substituting the truncation into
(2), and then taking moments with respect to {pn}N

n=0, one can derive a system of equations
which approximates the evolution of expansion coefficients {vn}N

n=0. With the vector notation

p := (p0, p1, . . . , pN)T and v := (v0, v1, . . . , vN )T , (5)

these equations take the form

〈

ppT
〉

∂tv +
1

ε

〈

µppT
〉

∂xv = − σ

ε2

(

〈

ppT
〉

− 1

2
〈p〉 〈p〉T

)

v , (6)

or in terms of the moments u = (u0, u1, . . . , uN)T := 〈pF 〉 =
〈

ppT
〉

v,

∂tu +
1

ε

〈

µppT
〉 〈

ppT
〉−1

∂xu = − σ

ε2

(

u− 1

2
〈p〉 〈p〉T

〈

ppT
〉−1

u

)

. (7)

In practice, the right-hand side of (7) is usually much simpler than it appears in this abstract
setting.

In the PN approximation, the basis functions in (7) are chosen to be the Legendre poly-
nomials [1], which satisfy the orthogonality relation

〈pnpm〉 =
2

2n + 1
δnm (8)

and the recursion relation

µpn(µ) =
n + 1

2n + 1
pn+1(µ) +

n

2n + 1
pn−1(µ) , µ ∈ [−1, 1] . (9)

The first four Legendre polynomials are

p0(µ) = 1 , p1(µ) = µ , p2(µ) =
1

2

(

3µ2 − 1
)

, p3(µ) =
1

2
(5µ3 − 3µ) ; (10)

for notational convenience, we denote their corresponding moments by

ρ := u0 , m := u1 , w := u2 , q := u3 . (11)

Using (8) and (9) and the fact that p0 = 1, one can evaluate the integrals in (7) to arrive at
the (scaled) PN equations

∂tu +
1

ε
(A + B) ∂xu = − σ

ε2
Qu , (12)
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where the flux matrices A and B and the relaxation matrix Q are given by

Anm =
n + 1

2n + 1
δn+1,m , Bnm =

n

2n + 1
δn−1,m , Qnm = δnm(1 − δn,0) . (13)

This system is linear hyperbolic. The eigenvalues of the matrix A+B are the roots {λi}N
i=1 ⊂

[−1, 1] of the polynomial pN+1. These roots (which are real and distinct) appear in pairs
with opposite signs that accumulate at {±1} as N → ∞. Corresponding to each eigenvalue
λi is a right eigenvector ri = p(λi).

In practice, PN equations are only used with odd values of N . The reason for this is
that one of the eigenvalues of the matrix A + B is zero when N is even. In such cases, it is
not possible to specify boundary conditions that are consistent with the original transport
equation [20]. Indeed, it turns out that a P2s system is typically less accurate than the
preceding P2s−1 system [7].

To provide the reader with intuition, plots of the variable ρ from a series of highly
resolved PN calculations are provided in Figure 1 for increasing values of N . The domain
of this problem is the interval [0, 2] and the boundary conditions are periodic. The initial
condition for ρ is

ρ(x, 0) =

{

2.0, x ∈ (0.8, 1.2) ,
0.0, x ∈ [0, 0.8] ∪ [1.2, 2.0] ,

(14)

All other moments are initially set to zero. As expected, the profile of ρ converges as N
increases. In practice, the number of equations needed to obtain sufficiently accurate results
decreases as collisions become more prevalent. Indeed, the PN equations are often used in
transition regimes, where the diffusion approximation of (2) is not valid but collisions still
play a major role in the dynamics of the system.

The reader may also note that the support of ρ expands as N increases. As more variables
are added to the system, the fastest wave speeds approach the limiting value of the transport
equation. For the calculations in Figure 1, ε = 2.0 and t = 1.0. Hence the transport equation
will propagate information from the initial data (14) a maximum distance of 0.5—meaning
that the support of the transport solution at t = 1.0 is the interval [0.3, 1.7].

2.2 Asymptotics and Rescaling

A formal asymptotic analysis of (12) shows that for small ε, un = O(εn). We therefore
rescale each component of u to an order one quantity: un → εnun. With this rescaling, the
expansion of F in (4) becomes

F =
N

∑

n=0

εnvn(x, t)pn(µ) =
N

∑

n=0

2n + 1

2
εnun(x, t)pn(µ) , (15)

while the PN system (12) takes the form

∂tu +

(

A +
1

ε2
B

)

∂xu = − σ

ε2
Qu . (16)
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Figure 1: Comparison of ρ for ε = 2.0 at time t = 1.0 and increasing choices of N . Initial
condition given by (14). In all cases, h = 0.002 and the computational time step is ∆t = 0.1h.

This scaling is non-standard, but it makes the asymptotic analysis more transparent. Thus,
unless explicitly stated otherwise, all variables in the remainder of the paper are defined with
respect to this scaling.

One might note that the matrices A and B appear in (12) and (16) in different linear
combinations, without any effect on the hyperbolicity. Given that these two systems are
equivalent (modulo a change of variables), this fact should come as no surprise. However, it
turns out that this is a special case of the following useful result.
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Proposition 1 For the matrices A and B defined in (13), let

A + B = RΛL , (17)

with L = R−1, be a diagonalization of the matrix A + B. Then for any α, β > 0

αA + βB = RαβΛαβLαβ , (18)

with

Λαβ
ii =

√

αβΛii , Rαβ
ij =

(

β

α

)i/2

Rij , Lαβ
ij =

(

α

β

)j/2

Lij , (19)

is a diagonalization of the matrix αA + βB.

Proposition 1 will be used for analysis and computation throughout the paper. Its proof is
a straight-forward calculation.

For fixed σ, a Chapman-Enskog analysis of (2) shows that

F =
ρ

2
+ O(ε) (20)

and that ρ formally satisfies the diffusion equation

∂tρ = ∂x

(

1

3σ
∂xρ

)

, (21)

up to order ε2. A similar analysis follows for the PN equations: while (20) follows immediately
from (15), equation (21) is formally established by examining the first two equations in (16):

∂tρ + ∂xm = 0 , (22a)

∂tm +
1

3

1

ε2
∂xρ +

2

3
∂xw = − σ

ε2
m . (22b)

For ε small, (22b) implies that m = − 1
3σ

∂xρ + O(ε2) which, upon substitution into (22a),
recovers (21).

3 The P1 System

In this section we introduce the P1 system and discuss the numerical challenges of simulating
general PN systems in the context of this simple example. We then present the approach
taken in [14] that will serve as a starting point for our general method. The assumption
that σ = 1 was used throughout [14] and, for simplicity of exposition, we maintain this
assumption here and in the next section. Non-constant cross-sections will be discussed in
Section 5.
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The P1 system, also known as the hyperbolic heat equation, is a relaxation model formu-
lated in a simple 2 × 2 system:

∂tρ + ∂xm = 0 , (23a)

∂tm +
1

3

1

ε2
∂xρ = − 1

ε2
m . (23b)

This model and nonlinear variants have been studied both theoretically [17,22,24,25,27] and
numerically [11, 15, 23]. Studies of relaxation in related models can be found in the context
of radiation and neutron transport [5, 12, 19, 26, 28] and also in drift-diffusion systems such
as charge transport in semiconductors [13, 16, 29] and chemotaxis [8, 9].

Upon diagonalization, the P1 system (23) takes the form of a Goldstein-Taylor model
[10, 34] with wave speeds ±(

√
3ε)−1. Indeed, if we set φ± = ρ ±

√
3εm, then

∂tφ
+ +

1

ε

1√
3
∂xφ

+ = − 1

2ε2
(φ+ − φ−) , (24a)

∂tφ
− − 1

ε

1√
3
∂xφ

− = − 1

2ε2
(φ− − φ+) . (24b)

Meanwhile, the diffusive character of (23) is evident upon formally balancing powers of ε in
(23b) to specify a closure for (23a) that is accurate up to O(ε2):

m = −1

3
∂xρ , (25a)

∂tρ =
1

3
∂2

xρ . (25b)

3.1 Numerical Difficulties

The numerical difficulties associated with (23) have been well documented [15, 23]. For
conventional schemes, there are essentially two related issues that arise in the limit ε → 0.
They are (i) excessive numerical dissipation and (ii) a restrictive time step. Both are easily
understood by way of a semi-discrete, first-order upwind scheme for (24):

dtφ
+
i +

1

ε

1√
3

φ+
i − φ+

i−1

h
= − 1

2ε2
(φ+

i − φ−

i ) , (26a)

dtφ
−

i − 1

ε

1√
3

φ−

i+1 − φ−

i

h
= − 1

2ε2
(φ−

i − φ+
i ) , (26b)

which, in terms of ρ and m takes the form

∂tρi +
mi+1 − mi−1

2h
=

h

2ε

1√
3

ρi+1 − 2ρi + ρi−1

h2
, (27a)

∂tmi +
1

ε2

1

3

ρi+1 − ρi−1

2h
+

1

ε2
mi =

h

2ε

1√
3

mi+1 − 2mi + mi−1

h2
. (27b)
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Here, and throughout the paper, h is the size of a uniform mesh spacing. For ε small, the
dominant balance in (27b) is

mi = −1

3

ρi+1 − ρi−1

2h
+ O(ε) , (28)

which when substituted into (27a), gives

∂tρi =
1

3

ρi+2 − 2ρi + ρi−2

4h2
+

h

2ε

1√
3

ρi+1 − 2ρi + ρi−1

h2
+ O(ε) . (29)

As ε → 0, the first term on the right hand-side of (29) yields a consistent discretization of the
diffusive flux on the right-hand side of (25b). However, the second term on the right-hand
side of (29)—the numerical dissipation term—will clearly affect the accuracy of the solution
unless the mesh spacing h is chosen much smaller than ε—an expensive undertaking given
that one need not resolve such small scales when discretizing the diffusion equation (25b)
directly. The expense of resolving ε is exacerbated by a stiff hyperbolic CFL condition which
requires that the time step ∆t in any temporal discretization of (27) satisfies

∆t < εCh (30)

for some O(1) constant C. Although higher-order Godunov-type schemes will decrease the
dissipation in (29) with respect to h, the factor of ε−1 remains1, as does the restrictive CFL
condition in (30).

Many schemes have been proposed to address the problem of excessive numerical dissipa-
tion. In [15], a splitting method is proposed that separates the system in stiff and non-stiff
components. This approach is also used in [14] to develop modified equations with better
asymptotic properties. In [11], a well-balanced approach takes advantage of the fact that the
asymptotic balance in (25a) is equivalent to the steady-state solution of (23b). In [23, 26],
a discontinuous Galerkin method uses an additional variable in each computational cell to
capture the diffusion limit. All of these schemes are asymptotic preserving (AP) [14] in the
sense that they give consistent discretizations of the diffusion equation in the limit as ε → 0,
and most of them have an improved time step restriction ∆t . h2 in the diffusive limit that
corresponds to the time step restriction for an explicit discretization of (25b). A notable
exception is [5], in which a fully implicit version of the well-balanced approach from [11] is
implemented for a nonlinear version of the P1 system.

3.2 Temporal Regularization

In this subsection, we recall specifically the method found in [14], which will serve as our
starting point for examining PN systems. The key idea for this method is to regularize the
P1 system (23) via a temporal splitting of stiff and non-stiff components:

1. Stiff:

∂tρ = 0 , (31a)

∂tm +
1

ε2

1

3
∂xρ = − 1

ε2
m ; (31b)

1For example, the dissipation term for an upwind scheme with linear, central difference reconstructions
is O(ε−1h3) [23].
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2. Non-Stiff:

∂tρ + ∂xm = 0 , (31c)

∂tm = 0 . (31d)

(Actually the splitting used in [14] is a variation of (31) that gives a well-posed hyperbolic
problem for the non-stiff component. This requirement is necessary for the scheme developed
in [15], but it turns out not to be important for our purposes.) By applying backward Euler
to the stiff component and forward Euler to the non-stiff component in (31), one arrives at
the semi-discrete scheme

ρk+1 = ρk − ∆tγ∂xm
k +

1

3
∆t(1 − γ)∂xxρ

k , (32a)

mk+1 = γmk − 1

3
(1 − γ)∂xρ

k , (32b)

where ∆t is the time step and

γ :=
ε2

ε2 + ∆t
→ 0 as ε → 0 . (33)

Although derived using an implicit step, this scheme is essentially explicit, since spatial
derivatives operate only at the current time step. However, it is also an O(∆t) approximation
of the continuum system

∂tρ + γ∂xm =
1

3
(1 − γ)∂xxρ , (34a)

∂tm +
1

3

γ

ε2
ρx = − γ

ε2
m , (34b)

which can then be discretized with standard techniques.
We point out several important features of (34):

1. The splitting used to derive (32) is also used in [15], but in the latter case, each step
is discretized in space independently. However, as noted in [14], separate spatial dis-
cretizations (i) increase computational expense and (ii) result in third order numerical
derivatives with subtle stability issues. Moreover, in the limit as ε → 0, the discretiza-
tion of ρ becomes

∂tρi =
ρi+2 − 2ρi + ρi−2

4h2
. (35)

While this discretization is consistent with the diffusion equation (25b), it is defined
on a staggered grid and thus susceptible to binary oscillations.

2. The wave speeds of the regularized P1 system (34) are

λ± =

√

γ2

3ε2
=

1√
3

ε

ε2 + ∆t
. (36)
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Thus the hyperbolic CFL condition for (34) is

(ε − Ch)∆t ≤ Chε2 , (37)

where C is an O(1) constant and depends on the particular numerical scheme that is
applied to (34) . For fixed ε, there are two cases: either ε is resolved by the spatial
mesh (Ch < ε) or it is under-resolved (Ch > ε). In the resolved case,

∆t ≤ Chε2

ε − Ch
, (38)

and as h → 0, we recover the original CFL condition. For fixed mesh size, one can
easily check that (38) is most restrictive when ε = 2Ch, in which case (37) reduces
to the explicit diffusive constraint ∆t ≤ 4C2h2. Any explicit discretization of the
convective terms in (34a) will require this type of constraint in order to be stable for
all values of ε. For the under-resolved case, (37) imposes no time restriction at all.
Thus with an implicit discretization of the diffusion term on the right-hand side of
(34a), the time step is determined only by temporal accuracy requirements. Although
not implemented in [14], this is one of the more powerful features of the method from an
applications point of view since, in many cases, an explicit diffusion condition—while
better than (30)—is still too restrictive.

3. The effect of the temporal regularization is to slow down the wave speeds. However,
for ∆t ∼ h2 ∼ ε2,

|λ±| ∼
1

h
. (39)

In such cases, the numerical dissipation in a first-order upwind scheme for (34) will be
O(1). Therefore higher order schemes (such as the MUSCL-type scheme used in [14])
are required to ensure that the discretization of (34) is AP in all regimes. One must
still accept a loss of spatial accuracy, but such losses are limited to one drop in order.
In particular, for a standard Godunov-type method, O(ε−1hν) dissipation terms in the
discretization of the P1 system become (at worst) O(hν−1) terms in the discretization
of the regularized system.

4 The P3 System.

Although many schemes for the P1 system (23) (or similar 2× 2 versions thereof) have been
developed, general PN systems have received far less attention. Extending P1 schemes to
general PN system is not always straight-forward for two reasons:

1. In general, each component un in (16) is coupled to the rest of the system through a flux
that is a linear combination of the components un+1 and un−1. The only exceptions
are the first (n = 0) and last (n = N) components, which happen to be the only
components of the P1 system. As a result the structure of P1 is much simpler than
the general PN system. For example, the splitting in (31) completely decouples the
evolution of ρ and m into separate equations. Such decoupling does not happen for
PN when N > 1.
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2. Many P1 methods (including the one from [14]) are based on the idea of projecting
the momentum variable m onto its leading order asymptotic value, as given in (25a).
Extending this approach to general PN leads to systems with spatial derivatives up to
order N . In such cases, it is not clear whether the resulting equations are well posed
and, if they are, how to handle them numerically.

We now highlight these two issues in some detail for the case N = 3. If we again set
σ = 1 and let

u = (ρ, m, w, q)T , (40)

then the P3 system takes the form

∂tρ + ∂xm = 0 , (41a)

∂tm + ∂x

(

1

ε2

1

3
ρ +

2

3
w

)

= − 1

ε2
m , (41b)

∂tw + ∂x

(

1

ε2

2

5
m +

3

5
q

)

= − 1

ε2
w , (41c)

∂tq + ∂x

(

1

ε2

3

7
w

)

= − 1

ε2
q . (41d)

The wave speeds of this system are

λ ∈







±1

ε

√

15 ± 2
√

30

35







=
1

ε
{±0.33998...,±0.86114...} . (42)

We perform a Chapman-Enskog analysis for (41) by formally expanding m, w, and q in
ε:

m = m(0) + ε2m(2) + ε4m(4) + . . . , (43a)

w = w(0) + ε2w(2) + ε4w(4) + . . . , (43b)

q = q(0) + ε2q(2) + ε4q(4) + . . . , (43c)

where m(2k), w(2k), and q(2k) depend on ρ and its derivatives. Substituting this expansion
into (41) yields the following asymptotics:

1. Leading order (equilibrium) terms:

∂tρ =
1

3
∂2

xρ + O(ε2) , (44a)

m(0) = −1

3
∂xρ , w(0) =

2

15
∂2

xρ , q(0) = − 2

35
∂3

xρ ; (44b)

2. Order ε2 terms:

∂tρ =
1

3
∂2

xρ − 1

45
ε2∂4

xρ + O(ε4) , (45a)

m(2) =
1

45
∂3

xρ , w(2) = − 2

105
∂4

xρ ; (45b)

12



3. Order ε4 terms:

∂tρ =
1

3
∂2

xρ − 1

45
ε2∂4

xρ +
2

945
ε4∂6

xρ + O(ε6) , (46a)

m(4) = − 2

945
∂5

xρ . (46b)

Note that we have only specified asymptotics of each moment in the P3 system through orders
that are consistent with the corresponding moments of the original transport equation (2).
In general, the nth component of u in the PN system (16) will agree with the nth moment of
(2) up to a formal O(ε2(N−n+1)) error, for all n ≥ 1

4.1 Extending the P1 Scheme

As with the P1 equations, the P3 system can be separated into stiff and non-stiff parts:

1. Stiff:

∂tρ = 0 , (47a)

∂tm +
1

ε2

1

3
∂xρ = − 1

ε2
m , (47b)

∂tw +
1

ε2

2

5
∂xm = − 1

ε2
w , (47c)

∂tq +
1

ε2

3

7
∂xw = − 1

ε2
q ; (47d)

2. Non-Stiff:

∂tρ + ∂xm = 0 , (47e)

∂tm +
2

3
∂xw = 0 , (47f)

∂tw +
3

5
∂xq = 0 , (47g)

∂tq = 0 . (47h)

The stiff relaxation component in this splitting is in lower diagonal form. It can therefore
be solved implicitly using the backward Euler method, giving

ρk+1/2 = ρk , (48a)

mk+1/2 = γmk − 1

3
(1 − γ)∂xρ

k , (48b)

wk+1/2 = γwk − 2

5
γ(1 − γ)∂xm

k +
2

15
(1 − γ)2∂2

xρ
k , (48c)

qk+1/2 = γqk − 3

7
γ(1 − γ)∂xw

k +
6

35
γ(1 − γ)2∂2

xm
k − 2

35
(1 − γ)3 ∂3

xρ
k . (48d)
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For the non-stiff component, an explicit step with forward Euler gives

ρk+1 = ρk+1/2 − ∆t∂xm
k+1/2 , (49a)

mk+1 = mk+1/2 − 2

3
∆t∂xw

k+1/2 , (49b)

wk+1 = wk+1/2 − 3

5
∆t∂xq

k+1/2 , (49c)

qk+1 = qk+1/2 . (49d)

Combining (48) and (49), we have

ρk+1 =ρk − ∆tγ∂xm
k +

1

3
∆t(1 − γ)∂2

xρ
k , (50a)

mk+1 =γmk − 1

3
(1 − γ)∂xρ

k − 2

3
∆tγ∂xw

k +
4

15
∆tγ(1 − γ)∂2

xm
k (50b)

− 4

45
∆t(1 − γ)2∂3

xρ
k , (50c)

wk+1 =γwk − 2

5
γ(1 − γ)∂xm

k − 3

5
∆tγ∂xq

k +
2

15
(1 − γ)2∂2

xρ
k (50d)

+
9

35
∆tγ(1 − γ)∂2

xw
k − 18

175
∆tγ(1 − γ)2∂3

xm
k +

6

175
∆t (1 − γ)3 ∂4

xρ
k , (50e)

qk+1 =γqk − 3

7
γ(1 − γ)∂xw

k +
6

35
γ(1 − γ)2∂2

xm
k − 2

35
(1 − γ)3 ∂3

xρ
k , (50f)

which is an O(∆t) approximation of the temporally regularized system

∂tρ + ∂xm − 1

3
(1 − γ)∂2

xρ = 0 , (51a)

∂tm + ∂x

(

1

3

γ

ε2
ρ +

2

3
γw

)

− 4

15
γ(1 − γ)∂2

xm
n +

4

45
(1 − γ)2∂3

xρ
n = − γ

ε2
m , (51b)

∂tw + ∂x

(

2

5

γ2

ε2
m +

3

5
γq

)

− 2

15

γ(1 − γ)

ε2
∂2

xρ
n − 9

35

γ2

ε2
∂2

xw
n

+
18

175
γ(1 − γ)2∂3

xm
n − 6

175
(1 − γ)3 ∂4

xρ
n = − γ

ε2
w , (51c)

∂tq + ∂x

(

3

7

γ2

ε2
w

)

− 6

35

γ2(1 − γ)

ε2
∂2

xm
n +

2

35

γ(1 − γ)2

ε2
∂3

xρ
n = − γ

ε2
q . (51d)

In this system, each component of u has, up to O(∆t), the correct leading order balance—
that is, when ε → 0,

m = −1

3
∂xρ + O(∆t) , w =

2

15
∂2

xρ + O(∆t) , q = − 2

35
∂3

xρ + O(∆t) , (52)

and ρ satisfies

∂tρ =
1

3
∂2

xρ . (53)

However, because the expressions for ρ and m in (52) and (53) are only accurate to O(ε2)
anyway, the leading order balances for w and q in (52) do not improve the order of accuracy
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in the asymptotic expression for F in (15). Nor do they lead to higher order accuracy in
the asymptotic equation for ρ. Instead, the large number of spatial derivatives in (51) is an
obvious drawback that presents the following questions:

1. Is (51) formally well-posed? (Note the sign on the term ∂4
xρ in (51c)). If so, are

there numerical approximations that are stable (for fourth derivatives) and avoid the
dispersive oscillations (for third order derivatives) like those observed in simulations of
the moment system in [13]?

2. How does the regularity required for solutions of (51) affect the ability of (51) to
accurately approximate the original P3 system?

3. Can one derive well-posed boundary conditions for (51) and implement them in a
practical numerical scheme?

Rather than attempt to address these questions, we will instead sacrifice the correct leading
order behavior of the higher order moments (at least for an initial time step) in order to
achieve a more practical regularization.

Remark 2 It is possible to update the non-stiff component in (47) implicitly by first updating
q and then working upward. However, such an approach only increases the number spatial
derivatives.

4.2 A Practical Alternative

To avoid a modified system with more than two spatial derivatives, we still use the splitting
in (47), but only the source terms in the stiff component will be updated implicitly. The
flux terms are evaluated explicitly, thus giving:

ρk+1/2 = ρk , (54a)

mk+1/2 = γmk − 1

3
(1 − γ)∂xρ

k , (54b)

wk+1/2 = γwk − 2

5
(1 − γ)∂xm

k , (54c)

qk+1/2 = γqk − 3

7
(1 − γ)∂xw

k . (54d)

For the P1 system, there is no difference in our approach, since ρt = 0 in the implicit step of
(31).

We now apply the same convective step as before to arrive at the semi-discrete scheme

ρk+1 = ρk − ∆tγ∂xm
k +

1

3
∆t(1 − γ)∂2

xρ
k , (55a)

mk+1 = γmk − 1

3
(1 − γ)∂xρ

k − 2

3
∆tγ∂xw

k +
4

15
∆t(1 − γ)∂2

xm
k , (55b)

wk+1 = γwk − 2

5
(1 − γ)∂xm

k − 3

5
∆tγ∂xq

k +
9

35
∆t(1 − γ)∂2

xw
k , (55c)

qk+1 = γqk − 3

7
(1 − γ)∂xw

k , (55d)
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which, in turn, is an O(∆t) approximation to the modified system

∂tρ + γ∂xm =
1

3

∆tγ

ε2
∂2

xρ
k , (56a)

∂tm + ∂x

(

1

3

γ

ε2
ρ +

2

3
γw

)

= − γ

ε2
m +

4

15

∆tγ

ε2
∂2

xm , (56b)

∂tw + ∂x

(

2

5

γ

ε2
m +

3

5
γq

)

= − γ

ε2
w +

9

35

∆tγ

ε2
∂2

xw , (56c)

∂tq + ∂x

(

3

7

γ

ε2
w

)

= − γ

ε2
q . (56d)

Note that in deriving (55) from (55), we have let ∆t → 0 only in evaluating time derivates.
The remaining instances of ∆t are held fixed.

We point out the key features of this regularized system, which we refer to as RP3

(regularized P3). The first three items are features of the P1 scheme that we wish to maintain.
The last item is a consequence of the new method applied to a larger (N > 1) system.

1. According to Proposition 1, the RP3 system is hyperbolic with waves speeds of the
order

√

γ

ε
=

ε

ε2 + ∆t
. (57)

This implies a hyperbolic time step restriction given by (38). Moreover, O(hν/ε)
dissipation terms in a Godunov-type discretization of the P3 system are replaced by
terms that are O(hν−1) or smaller.

2. For under-resolved cases (ε < Ch), there is no hyperbolic time step restriction. Thus
an implicit discretization of the diffusive terms in (56) leads to schemes for which the
time step is based only on requirements of temporal accuracy. In this respect, an
attractive feature of the regularized system is that there is no coupling of components
through the diffusive terms.

3. As ε → 0, γ → 0 so that (56a) recovers the diffusion equation (44a) for ρ at leading
order. Moreover, because the diffusion term in (56a) is built into the equation, any
spatial discretization will inherit the same property.

4. The price of implementing (56) instead of (51) is that the terms w and q in (56) do not
possess the correct leading order balance (see (44)) after a single time step. Instead,
in the limit as ε → 0,

wk+1 = −2

5
∂xm

k + O(∆t) , (58a)

qk+1 = −3

7
∂xw

k + O(∆t) . (58b)

If mk and wk have the correct leading order balance, then so will qk+1 and wk+1.
However, this will not be the case for general initial data. Even so, the correct balance
will be achieved after three time steps. In the first time step, mk+1 is projected into
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its equilibrium value. Then wk+2 is projected into its equilibrium value in the next
step and qk+3 is projected in the third time step. We note also that for small values
of ε, the error introduced by (58a) and (58b) into the expansion (15) and the diffusion
equation (44a) is O(ε2).

4.3 Numerical Examples

For numerical calculations, we introduce a spatial discretization of (56) using an explicit,
conservative discretization of the convective terms and the canonical implicit discretization
of the diffusive terms. In vector notation, the scheme takes the form

uk+1
j = uk

j − ∆tM
uk

j+1/2 − uk
j−1/2

h
− ∆tγ

ε2
Quk

j +
∆t2γ

ε2
AB

uk+1
j+1 − 2uk+1

j + uk+1
j−1

h2
, (59)

where M := γ(ε−2B + A) and uk
j is the average of u at time tk = k∆t over a cell Ij of

uniform width h. The edge fluxes Muk
j±1/2 in (59) are determined using a second order

upwind method:

Muk
j+1/2 =

1

2
M

(

u
k,l
j+1/2 + u

k,r
j+1/2

)

+
1

2
|M |

(

u
k,l
j+1/2 − u

k,r
j+1/2

)

, (60)

where the matrix |M | := R|Λ|R−1 is calculated using the eigenvectors and eigenvalues from
the diagonalization M = RΛR−1 of the matrix M . The right and left edge values of u in
(60) are given by

u
k,l
j+1/2 = Rw

k,l
j+1/2 and u

k,r
j+1/2 = Rw

k,r
j+1/2 , (61)

and the characteristic edge values are determined by linear reconstructions on adjacent cells:

w
k,l
j+1/2 = wk

j +
h

2
w′

j and w
k,r
j+1/2 = wk

j+1 −
h

2
w′

j+1 , (62)

where wk
j := R−1uk

j and the slopes w′

j approximate derivatives in each cell.

Our first calculation is an accuracy test using smooth initial data on the domain [0, 2]:

ρ(x, 0) = 1.0 + 0.9 cos(4π(x − 1)) , (63a)

m(x, 0) = w(x, 0) = q(x, 0) = 0 . (63b)

The boundary conditions are periodic. We run the RP3 computation to times t = 1.0 and
t = 0.1 for ε = 2.0 and ε = 10−3, respectively. No limiter is used in the slope approximation
of w′. Convergence results are presented in Tables 1 and 2. The reader should note that the
large jump in the order of converge between the 640 and 1280 point grids in Table 2 occurs
when the mesh switches from under-resolved to resolved and the explicit diffusion time step
restriction, as in (38), must be enforced. As a result, the time step drops from 1.25 × 10−3

to 1.67 × 10−6.
A more interesting example uses the same boundary and initial conditions, except that

ρ(x, 0) =

{

2.0, x ∈ (0.8, 1.2) ,
0.0, x ∈ [0, 0.8] ∪ [1.2, 2.0] .

(64)
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points ρ m w q
10 9.40e-02 — 4.08e-02 — 2.25e-03 — 1.16e-04 —
20 3.9e-02 1.25 3.89e-03 3.39 1.34e-03 0.75 1.86e-04 -0.68
40 9.23e-03 2.10 5.95e-04 2.71 2.42e-04 2.47 2.44e-05 2.93

L2 80 2.28e-03 2.02 3.20e-04 0.89 4.35e-06 5.80 3.91e-06 2.64
160 7.16e-04 1.67 9.43e-05 1.76 2.67e-05 -2.62 4.59e-06 -0.23
320 2.66e-04 1.43 2.37e-05 1.99 1.72e-05 0.64 2.60e-06 0.82
640 9.90e-05 1.43 5.59e-06 2.09 8.23e-06 1.06 1.19e-06 1.13
1280 2.66e-05 1.89 1.49e-06 1.91 2.85e-06 1.53 4.06e-07 1.55

10 1.33e-01 — 5.49e-02 — 3.19e-03 — 1.55e-04 —
20 5.58e-02 1.25 5.23e-03 3.39 1.89e-03 0.75 2.50e-04 -0.68
40 1.24e-02 2.17 8.42e-04 2.63 3.25e-04 2.54 3.45e-05 2.86

L∞ 80 3.19e-03 1.96 4.74e-04 0.91 6.07e-06 5.74 5.46e-06 2.66
160 1.01e-03 1.66 1.33e-04 1.75 3.77e-05 -2.63 6.47e-06 -0.25
320 3.77e-04 1.42 3.35e-05 1.98 2.43e-05 0.63 3.67e-06 0.82
640 1.41e-04 1.42 7.90e-06 2.09 1.16e-05 1.06 1.68e-06 1.13
1280 3.85e-05 1.87 2.11e-06 1.91 4.03e-06 1.53 5.74e-07 1.55

Table 1: Errors and convergence rates for the RP3 moments with respect to an ‘exact’
solution computed with 1600 points. Here t = 1.0, ε = 2.0, and smooth initial data is given
in (63).

points ρ m w q
10 1.12e-01 — 2.49-01 — 1.32e+02 — 2.39e+02 —
20 3.76e-02 1.58 1.93e-01 0.37 1.44e+01 3.20 5.16e+02 -1.11
40 1.57e-02 1.26 7.68e-02 1.33 1.33e+00 3.44 2.47e+01 4.39

L2 80 6.24e-03 1.33 2.94e-02 1.38 2.23e-01 2.57 2.49e+00 3.31
160 2.70e-03 1.21 1.25e-02 1.24 7.38e-02 1.60 6.31e-01 1.98
320 1.25e-03 1.12 5.68e-03 1.13 3.17e-02 1.22 2.45e-01 1.36
640 5.97e-04 1.06 2.70e-03 1.07 2.48e-02 1.09 1.10e-01 1.15
1280 6.73e-07 9.79 1.68e-06 10.65 2.66e-05 9.12 5.41e-03 4.35

10 1.59e-01 — 3.35-01 — 1.87e+02 — 3.22e+02 —
20 5.31e-02 1.58 2.60e-01 0.37 2.04e+01 3.20 6.94e+02 -1.11
40 2.11e-02 1.33 1.09e-02 1.26 1.78e+00 3.51 3.49e+01 4.31

L∞ 80 8.71e-03 1.27 1.76e-02 1.40 3.12e-01 2.52 3.48e+00 3.33
160 3.81e-03 1.19 1.76e-02 1.22 1.04e-01 1.58 8.89-01 1.97
320 1.77e-03 1.11 8.03e-03 1.13 4.48e-02 1.22 3.46e-01 1.36
640 8.85e-04 1.06 3.82e-03 1.07 2.10e-02 1.09 1.56e-01 1.15
1280 2.50e-06 8.40 4.09e-06 9.87 6.07e-04 5.11 1.12e-03 0.48

Table 2: Errors and convergence rates for the RP3 moments with respect to an ‘exact’
solution computed with 2560 points. Here t = 0.1, ε = 10−3, and smooth initial data is
given in (63).
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For this discontinuous initial condition, we compute solutions using the upwind discretization
(59) for ε ∈ {2.0, 10−2, 10−4}. For ε = 2.0, we calculate w′

j in (62) using a minmod-type
limiter:

w′

j =
1

h
minmod

(

1

2
(wj+1 − wj−1), θ(wj+1 − wj), θ(wj −wj−1)

)

(65)

that is applied component-wise with θ = 2.0. However, in diffusive regimes, we have observed
that limiting creates small glitches near extrema due to clipping. These glitches vanish under
mesh refinement and appear only in higher order moments. Other limiters—including (65)
with θ = 1, the Van Leer limiter, and the superbee limiter—produce similar effects. In order
to avoid discrepancies due to the choice of reconstruction, we have opted to remove the
limiter for ε = 10−2 and ε = 10−4, where the solution is presumably smooth. An in-depth
analysis of limiter effects is on-going.

Results of our computations are given in Figures (2)-(4). In Figure (2), we compare P3

and RP3 with ε = 2.0 using a “coarse” mesh (h = 0.02) and a “fine” mesh (h = 0.002). The
numerical results for the two systems are nearly identical for all four moments. This is to
be expected since ε is resolved by both schemes on both meshes.
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0.6
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0 0.5 1 1.5 2
−0.1

0
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0 0.5 1 1.5 2

−0.02
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0.02

q

Figure 2: Comparison of P3 and RP3 results for ε = 2.0 at time t = 1.0. Initial condition
for ρ is given by (64), while all other moments are initially zero. Dashed line: P3, h = 0.02;
Solid line: P3, h = 0.002; circles: RP3, h = 0.02; triangles: RP3, h = 0.002. In all cases, the
computational time step is ∆t = 0.1h.
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In Figure (3), we present similar results for ε = 10−2 and t = 0.1. In this case, the coarse
mesh almost resolves ε, and the time step for the RP3 calculation is about 25% larger than
for the P3 calculation. For the finer mesh, ε is resolved, and the time steps are essentially
the same. The results for all four computations (both systems at both resolutions) are quite
similar to each other and to the leading order diffusion limit. The coarse P3 calculation
shows some discrepancies in the higher moments. However, in practice, the effect of these
discrepancies is small. Indeed these differences have been over-emphasized by our choice
of scaling (see Section 2.2), which has elevated all components of u to O(1) quantities with
respect to ε. For example, q only contributes to the expansion of F in (15) at order ε3 = 10−6.
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5
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Figure 3: Comparison of P3 and RP3 for ε = 10−2 and the leading order diffusion limit (52)
at time t = 0.1. Initial condition for ρ is given by (64), while all other moments are initially
zero. Dashed line: P3, h = 0.02, ∆t = 2.0×10−5; Solid line: P3, h = 0.002, ∆t = 2.0×10−6;
circles: RP3, h = 0.02, ∆t = 2.5 × 10−5; triangles: RP3, h = 0.002, ∆t = 2.0 × 10−6. The
solution for the diffusion limit is also given by a dash-dot line, but is not visible because of
overlap.

In Figure 4, ε = 10−4 is not resolved by either mesh. The profile of ρ computed with
the P3 system is correct at the finer mesh, because of the second-order spatial accuracy.
However, the coarse mesh profile is clearly not accurate. One the other hand, the RP3

profile for ρ—which uses a much larger time step—agrees quite closely, at both resolutions,
with the solution of the diffusion equation (44a). As before, the P3 profile for higher-order
moments show noticeable discrepancies from the diffusion limit. However, because ε if so
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small, these differences do not substantially contribute to the expansion of F or the closure
equation for ρ.

The main point to take away from the last two figures is that as ε becomes smaller,
the upwind method for P3 requires an increasing number number of computational cells
needed to maintain accuracy. Moreover, more cells means smaller time steps. Meanwhile,
the RP3 calculation will continue to capture the correct diffusion limit at a resolution that
is independent of ε.
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Figure 4: Comparison of P3 and RP3 for ε = 10−4 and the leading order diffusion limit (52)
at time t = 0.1. Initial condition for ρ is given by (64), while all other moments are initially
zero. Dashed line: P3, h = 0.02, ∆t = 2.0×10−7; Solid line: P3, h = 0.002, ∆t = 2.0×10−8;
circles: RP3, h = 0.02, ∆t = 2.5 × 10−3; triangles: RP3, h = 0.002, ∆t = 2.0 × 10−4. The
solution for the diffusion limit is also given by a dash-dot line, but is not visible because of
overlap.

5 General PN Systems with Varying Cross-Sections

In this section, we apply our regularization method to general PN systems (N ≥ 1 and
odd) with spatially varying cross-sections. The resulting regularization is a hyperbolic, non-
conservative system with spatially varying fluxes and coefficients. Our numerical scheme for
this system is based on the wave-splitting method in [3].
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The derivation of a general regularized system uses the same recipe as before. We split
the original PN system (16) into a stiff relaxation step and a non-stiff convection step:

1. Relaxation

∂tu +
1

ε2
B∂xu = − σ

ε2
Qu , (66a)

2. Convection
∂tu + A∂xu = 0 . (66b)

In the relaxation step, we update the source terms implicitly and the flux terms explicitly.
This gives an intermediate value

uk+1/2 = Γuk +
∆t

ε2
ΓB∂xu

k , (67)

where Γ is a diagonal matrix with components

Γ11 = 1 and Γnn = γ :=
ε2

ε2 + σ∆t
, n > 1 . (68)

(Note that the definition of γ above recovers the original definition (33) when σ = 1.)
Applying the convection step (66b) with initial condition uk+1/2 gives

uk+1 = uk+1/2 − ∆tA∂xu
k+1/2

= Γuk − ∆t
(

A∂x(γuk) +
γ

ε2
B∂xu

k
)

+
∆t2

ε2
AB∂x(γ∂xu

k) . (69)

Here we have used the fact that, due to the special form of A and B (see (13)),

AΓ = γA and ΓB = γB . (70)

The temporal discretization (69) is an O(∆t) approximation of the regularized PN , or
RPN , system

∂tu +
γ

ε2
B∂xu + A∂x(γu) = −γσ

ε2
Qu +

1

ε2
AB∂x(∆tγ∂xu) . (71)

Like the RP3 system (56), the RPN system has the following properties:

1. The order of the wave speeds is

γ

ε
=

ε

ε2 + σ∆t
. (72)

Thus the hyperbolic CFL condition is

(ε − Chσ)∆t ≤ Chε2 , C = O(1) , (73)

and O(hν/ε) dissipation terms in a Godunov-type scheme for the original PN system
are now at most O(hν−1).
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2. When ε is under-resolved (ε < Chσ), there is no hyperbolic time step restriction. In
such cases, an implicit discretization of the diffusion term in (71) leads to a scheme
for which no restriction on the time step is required for linear stability. Because the
matrix AB is diagonal, solving the diffusion terms implicitly is relatively simple.

3. The equation for ρ in (71),

∂tρ + ∂x(γm) =
1

ε2

∆t

3
∂x(γ∂xρ) , (74)

formally recovers the diffusion equation (21) in the limit as ε → 0.

4. For i > 1 and fixed σ, m has the correct leading-order balance up to an O(∆t) cor-
rection. Although the balance for higher order moments is not correct after a single
time step, these moments will be projected into the correct leading order balance (up
to an O(∆t) error) after a finite number of time steps. In any event, the contribution
of these terms to the asymptotic expansion of F in (15) is small when ε is small.

5.1 Spatial Discretization

Discretizing (71) in space is challenging when the cross-section varies, especially since one
of the convection terms is non-conservative. We utilize the wave-splitting technique from
[3], which was developed to solve hyperbolic systems with spatially varying fluxes. The
wave-splitting method can also be applied to systems with source terms, which are directly
incorporated into the Riemann solver. The idea of balancing fluxes and source terms in this
way has been advocated in [32] in the context of Euler equations and also in [33] in a more
general context. The general notion of upwinding source terms has also been a basic building
block for the numerical schemes found in [2, 4, 9].

To use the wave-splitting technique, we first apply Leibniz rule to the term γB∂x(u
k)

and rewrite (71) in conservation form:

∂tu +

(

A +
1

ε2
B

)

∂x(γu) = −γσ

ε2
Qu +

∆t

ε2
AB∂x (γ∂xu) +

1

ε2
B(∂xγ)u . (75)

This re-formulation ensures that the discretization of (74) will be conservative by isolating
the non-conservative term B(∂xγ)u on the right-hand side. The trade-off is that, for higher
moments of u, we must properly interpret, even when the cross-section is discontinuous in
space.

Following the recipe in [3] (but using different notation), we introduce, at each time level
k and each cell interface xj+1/2, the quantity

∆k
j+1/2 :=

(

A +
1

ε2
B

)

(γj+1u
k
j+1−γju

k
j )+

γj+1/2σj+1/2

ε2
Quk

j+1/2−
1

2ε2
B(γj+1−γj)(u

k
j+1+uk

j ) ,

(76)
which is a first order (in space) approximation of the jump across the interface due to flux
differences, the source term ε−2γσQuk, and the cross-section gradient term ε−2B(∂xγ)uk at
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time level k. The discretization of the source term at the cell interface is based on an average
of adjacent cell values:

γj+1/2σj+1/2Quk
j+1/2 =

1

2
(γjσjQuk

j+1 + γjσjQuk
j+1) . (77)

We then update u as follows:

uk+1
j = uk

j−
∆t

h

(

R−

ε L−

ε ∆k
j+1/2 + R+

ε L+
ε ∆k

j−1/2

)

+
∆t2

ε2h
AB

(

(γ∂xu)k+1
j+1/2 − (γ∂xu)k+1

j−1/2

)

. (78)

Here R±

ε and L±

ε are matrices of size (N + 1) × (N + 1)/2 and (N + 1)/2 × (N + 1),
respectively, which contain the left and right eigenvectors corresponding to positive and
negative eigenvalues of the matrix γ(A+ε−2B). With an appropriate scaling, these matrices
can be chosen so that they are independent of γ and therefore constant in space. The
diffusive fluxes in (78) are given by

(γ∂xu)j+1/2 = γj+1/2
uj+1 − uj

h
, (79)

where γj+1/2 is the harmonic average of cell values to the right and left of the interface.
A second order version of this wave-splitting scheme is also derived in [3] based on a Taylor

expansion analysis. Since our current regularization is only an O(∆t) accurate approximation
of the original PN system, we only include flux corrections to improve spatial accuracy:

uk+1 = uk−∆t

h

(

R−

ε L−

ε ∆k
j+1/2 + R+

ε L+
ε ∆k

j−1/2

)

−∆t

h

(

F̃j+1/2 − F̃j−1/2

)

+
∆t2

ε2h
AB

(

(γ∂xu)k+1
j+1/2 − (γ∂xu)k+1

j−1/2

)

, (80)

where, following [3], the flux corrections are given by

F̃j+1/2 =
1

2

N
∑

n=0

sgn(λn
j+1/2)

(

1 − ∆t

h
|λn

j+1/2|
)

L
{

rn
ε (lnε )T∆k

j+1/2

}

. (81)

Here {λn
j+1/2}N

n=0 are the eigenvalues of the matrix γ(A+ε−2B) evaluated on the upwind side

of the cell interface, and the vectors {rn

ε }N
n=0 and {lnε }N

n=0 are the right and left eigenvectors
of this matrix (which are constant in space). The operator L is a limiter given by [18]

L(qj+1/2) := φ

( |qj+1/2|
|qj′+1/2|

)

qj+1/2 (82)

for some choice of smoothness indicator φ, and j′ is the index on the upwind side of the
interface xj+1/2. Note that without the source term, (80) is just a limited Lax-Wendroff
scheme for the left-hand side of (75).
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Unfortunately, the addition of flux corrections to our scheme is not always stable. In
streaming regimes, the only limiter that is consistently stable is the minmod limiter φ(θ) =
minmod(1, θ). Worse yet, in diffusive regimes, there are cases when our implementation of
(80) is unstable for the minmod limiter as well, even when the cross-section varies smoothly.
Numerical experiments show that the onset of instability is marked by negative values for
the variable ρ which, by definition, is a non-negative quantity. It is almost certain that
the source of this instability is the naive treatment of the non-conservative term in (71),
and further analysis is clearly needed here. Even so, the results of the next section clearly
indicate the potential of the regularization method.

5.2 Numerical Examples

In this subsection, we revisit the example of Section (4.3), but now with spatially varying
cross-sections.

5.2.1 Vanishing Cross-section

In this experiment, we set ε = 10−3 and consider the smoothly varying cross-section

σ(x) = 100(x − 1)4 , (83)

which is large at the edges of the domain but vanishes in the center. The vanishing cross-
section means that both the PN and RPN systems behave like wave equations with O(1/ε)
wave speeds near x = 1. Thus both systems are numerically stiff.

The vanishing cross-section (83) has been considered for a nonlinear version of the P1

system in [5]. In that work, a fully implicit scheme was used in order to overcome the
fast wave speeds in the center of the domain. In some applications, this approach may
be preferred. However, one must be willing to sacrifice resolution of the hyperbolic wave
structures in order to take time steps beyond the hyperbolic CFL condition.

The vanishing cross-section presents difficulties for Godunov-type discretizations of the
RPN system. For global stability, the CFL condition (73) must be satisfied for all values of
σ. In particular, enforcing (73) in the center of the domain—where σ = 0 and the dynamics
are not diffusive—requires that ∆t ≤ Chε. This small time step does not provide enough
of a regularizing effect in regions of the domain where there the dynamics are diffusive,
particularly in cases where h = O(ε). For example, setting ∆t =Chε and h = ε in (72) gives
wave speeds on the order of

γ

ε
=

ε

ε2 + Cσε2
=

1

ε

(

1

1 + Cσ

)

. (84)

Thus when Cσ = O(1), the reduction in wave speeds is insignificant so that excessive nu-
merical dissipation is again an issue.

One approach to solving this problem is to use a local time step to derive the regularized
system (71) and then set the computational time step ∆t for global stability. For the wave-
splitting algorithm, this is not necessary because of the balance between sources and fluxes
that is built into the solver. Indeed, we note the following
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Proposition 3 The wave splitting algorithm for the original PN system (16) is asymptotic
preserving.

Note that, in this context, the original PN systems corresponds to the extreme case ∆t → 0
in the regularized system (71). A proof of this proposition is given in the appendix.

Proposition 3 shows that the wave-splitting algorithm is an attractive option for the
vanishing cross-section problem, independent of the regularization. However, it is not the
best choice for generic problems because it is numerically stiff, even when σ = O(1). A related
algorithm for the P1 system is presented in [11] that does allow for an explicit diffusive time
step.

We present computational results for RP7 computations in Figure (5) at two different
resolutions, using the simple wave-splitting scheme (78) in both cases. As a reference, we
compare to a profile computed with a fully second-order discontinuous Galerkin (DG) method
applied to the original P7 system. The DG scheme is taken from [26] and is known to be
asymptotic preserving. In particular, for fixed σ, the DG scheme becomes a continuous,
finite-element scheme for the diffusion equation in the limit ε → 0.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2
ρ

Figure 5: Profile of ρ for the vanishing cross-section (83) at time t = 0.1, with ε = 10−3.
Circles: RP7 using wave splitting scheme (78) with h = 0.02 and ∆t = 2.0× 10−6; solid line:
RP7 using wave splitting scheme (78) with h = 0.002 and ∆t = 2.0× 10−7; crosses: P7 using
DG scheme from [26] with h = 0.02 and ∆t = 6.0 × 10−6.

26



5.2.2 Discontinuous Cross-section

In our final experiment, we consider the discontinuous cross-section

σ(x) =

{

0.02, x ∈ [0.35, 0.65] ∪ [1.35 ∪ 1.65] ,
1.0, x ∈ [0, 0.35) ∪ (0.65, 1.35) ∪ (1.65, 2] ,

(85)

and compute solutions to the RP7 system in (i) a streaming regime (ε = 2.0), (ii) a transition
regime (ε = 4.0× 10−2), and (iii) a diffusive regime (ε = 10−5). Results of these calculations
for the density ρ and the momentum m are shown in Figure (6), where they are again
compared to DG results.(2) In the streaming case (Figures 6a-b)), we use the wave-splitting
algorithm (80) with flux corrections. The scheme is slightly more dissipative than the DG
solver which uses the limiter in (65) with θ = 2. Unfortunately, our implementation of the
algorithm is unstable with such a limiter.

In the transition regime (Figures 6c-d)), we see that the first two moments of each scheme
give very similar results. There are two minor differences: (i) the DG scheme clips the density
profile at x = 1.0 and (ii) the small discontinuities in the RP7 solution for m at x = 0.65
and x = 1.35 are not present in the DG solution.

In the diffusive regime (Figures 6c-d)), we use the simple wave-splitting algorithm (78)
because (80) is unstable. The profile for ρ in the RP7 solution and the DG solution to P7

agree quite closely, again with only minor differences at x = 1.0. However, the DG solution
does a much better job capturing the smooth behavior of m. By breaking up the term
γB∂x(u

k) in (71), we have altered the numerical balance for m and for the other higher
order moments, and the effect of our treatment becomes more pronounced as ε becomes
smaller. In this case, the main benefit of our implementation is the speedup enabled by a
fully implicit discretization (since ε is under-resolved). Whereas the DG scheme is explicit,
with time step ∆t = 6.0 × 10−8, our time step is ∆t = 2.0 × 10−3.

6 Discussion and Conclusion

Using an operator splitting technique, we have derived a system of regularized equations
which formally approximate the PN equations in a slab geometry up to a first order temporal
correction. The new system is similar to the original system in the streaming limit; it captures
the proper diffusion limit; and it is much less stiff than the original PN system. Indeed, for
under-resolved regimes, there is no hyperbolic time step restriction required to maintain
linear stability.

For spatially varying cross-sections, the regularized system is hyperbolic, but contains
non-conservative terms. Conventional upwind schemes are not appropriate for such a sys-
tem, so we have employed a wave-splitting technique developed in [3]. Our results are
generally positive; however, when adding higher order corrections to the scheme, there are
some stability issues that must be resolved.

There are several important issues about the temporal regularization that should be
addressed. Our plans for future work include the following:

2All results are cell averages. For the DG scheme, the linear reconstruction of the momentum variable in
diffusion regimes often displays a sawtooth behavior.
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Figure 6: Comparison of RP7 using wave-splitting scheme (circles) and P7 using DG scheme
(solid line) for the cross-section given in (85). Left plots are ρ and right plots are m. From
top to bottom: ε = 2.0, t = 1.0; ε = 4.0 × 10−2, t = 0.1; ε = 10−5, t = 0.05. In plots (a)-(d)
RP7 solution is computed with wave-splitting scheme with flux corrections (80). In plots
(e)-(f), RP7 solution is computed using the simpler scheme (78). For comparison, the bottom
two plots also contain the diffusion limit (dash-dot line), but it is not as visible because of
overlap. All computations use mesh spacing h = 0.02. For the DG scheme, ∆t = 6.0× 10−8.
For the RP7 and diffusion calculations, ∆t = 2.0 × 10−3.
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• Extension to multiple dimensions, non-linear systems, and systems with

more complicated physics. Of particular interest is thermal radiative transfer,
where the cross-section depends on a material temperature that is coupled to the
PN system via a relaxation term. The extension to nonlinear systems is a challenge
because, unlike the linear case, function composition does not result in simple matrix
multiplication.

• Improved accuracy. We would like to improve on the temporal accuracy of our
regularization. However, the building blocks of any new method should be systems
of hyperbolic-parabolic type in order to avoid high-order (greater than two) spatial
derivatives. In developing these methods, one must also consider the “asymptotic
target”. To leading order, a method must always recover the diffusion equation in the
diffusion limit. However, it may be the Chapman-Enskog expansion does not generate
the proper target at higher orders of ε.

• Limiter effects. We are currently investigating the effects of different limiters and
reconstructions for a wide range of ε values, but particularly in diffusive regimes, where
ε is small. Our initial experiments have found that limiters affect higher order moments
in these regimes. The issue here is that higher order moments becomes spatial gradients
of lower order moments in the diffusion limit. Thus slope limiters must be implemented
with care. In very diffusive regimes, these moments contribute little to the expansion of
F in (15); in such cases, the numerical artifacts introduced by different reconstructions
may not matter. However, in transition regimes that are only slightly diffusive, these
artifacts may be problematic.

• Methods for spatially varying cross-sections. Although our regularization shows
promising results, more work is required to develop a robust scheme for the RPN system
with non-constant cross-sections. Any such scheme should maintain conservation of ρ
and the leading order balances for higher order moments. It should also be able to
handle discontinuities in the cross-section which model material interfaces. Current
work in this direction is focused on applying the theory of non-conservative products
[6, 30].

• Analytical properties of regularized equations. The derivation of the RPN equa-
tions in this paper has been purely formal. An important step forward is to establish
rigorous results relating the regularized equations to the original PN system. Part
of this analysis will certainly require a deeper understanding of the nonconservative
product γB∂x(u

k) from (75)

7 Appendix

Proof of Proposition 3. For simplicity and without loss of generality, we apply the
first-order wave-splitting algorithm to (16) without explicitly discretizing in time. Thus the
scheme has the form

hdtui +
(

R−

ε L−

ε ∆i+1/2 + R+
ε L+

ε ∆i−1/2

)

= 0 , (86)
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where

∆i+1/2 :=

(

A +
1

ε2
B

)

(ui+1 − ui) −
hσi+1/2

ε2
Qui+1/2 , (87)

σi+1/2 and ui+1/2 are averages of adjacent cell values, and the matrices R±

ε and L±

ε contain
right and left eigenvectors corresponding to the positive and negative eigenvalues of A+ε−2B.
The first two components of ∆i+1/2 are

[∆i+1/2]0 = mi+1 − mi , (88a)

[∆i+1/2]1 =
2

3
(wi+1 − wi) +

1

3

ρi+1 − ρi

ε2
+

hσi+1/2

ε2
mi+1/2 . (88b)

For clarity, we use square brackets to separate subscripted indices that denote vector and
matrix components from those used to denote mesh cells. Recall from (10) that ρ, m, and
w are the first three components of u.

It is not easy to infer the asymptotic behavior of ∆i+1/2 from (86) because the components
of Rε and Lε depend on ε. To make the asymptotics more transparent, we express these
matrices in terms of the corresponding matrices R and L associated with the matrix A + B.
The components of R and L are independent of ε; according to Proposition 1,

R±

ε = S−1
ε R± and L±

ε = SεL
± , (89)

where [Sε]nr = εnδnr and [S−1
ε ]nr = ε−nδnr are diagonal matrices.

By applying L−

ε and L+
ε to (86) at cells i and i + 1, respectively, one can express ∆i+1/2

as

∆i+1/2 = −hS−1
ε R

(

L−Sεdtui

L+Sεdtui+1

)

. (90)

Thus, because of S−1
ε , the asymptotics of each component are

[∆i+1/2]n = hO(ε−n) , 0 ≤ n ≤ N . (91)

From (88b) and (91), it follows immediately that

mi+1/2 = − 1

3σi+1/2

ρi+1 − ρi

h
+ O(ε) . (92)

This is a discrete version of the leading order balance in (22b).
To recover the limiting equation for ρ ≡ [u]0, we rewrite (86) in the following form:

hdtui +
∆i+1/2 + ∆i−1/2

2
= S−1

ε (R+L+ − R−L−)Sε

[∆i+1/2 −∆i−1/2]

2
. (93)

When the source term in (87) is zero, equation (93) is just a standard first-order, upwind
scheme and the term on the right-hand side is the dissipation term. Taking the first compo-
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nent of (93) and using (88a), we have

dtρi +
mi+1 − mi−1

2h
=

N
∑

n=0

[S−1
ε (R+L+ − R−L−)Sε]0n

[∆i+1/2 − ∆i−1/2]n

2h
(94a)

=

N
∑

n=0

[(R+L+ − R−L−)Sε]0n

[∆i+1/2 − ∆i−1/2]n
2h

(94b)

=

N
∑

n=0

εn[R+L+ − R−L−]0n

[∆i+1/2 −∆i−1/2]n
2h

(94c)

= O(h) . (94d)

Note that the only contribution of S−1
ε in the dissipation term in (94a) is [S−1

ε ]00 = 1 and
that (94d) is computed from (94c) using (91). Finally, by setting mi+1/2 = (mi + mi+1)/2 in
(92) and then substituting the result into (94), we recover a consistent discretization of the
diffusion equation (21) in the limit that ε → 0.
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